
Lecture 9: Memory Representation & Hack Assembly CSE 390B, Autumn 2022

CSE 390B, Autumn 2022
Building Academic Success Through Bottom-Up Computing

Lecture 9: Memory Representation & Hack Assembly CSE 390B, Autumn 2022

Memory Representation
& Hack Assembly

Memory Representation, Hack Assembly Review,
Implementing Multiplication in Hack, Project 5 Overview

Lecture 9: Memory Representation & Hack Assembly CSE 390B, Autumn 2022

Lecture Outline

❖ Hack Assembly Memory Representation
▪ I/O, Memory Mapping, External vs. Internal Memory

❖ Hack Assembly Language Review
▪ Registers, A-Instructions, Symbols, & C-Instructions

❖ Multiplication Implementation Exercise
▪ Multiplying Two Numbers in Hack Assembly

❖ Project 5 Overview
▪ Specification Annotation, Machine Language, & Building

Computer Memory

2

Lecture 9: Memory Representation & Hack Assembly CSE 390B, Autumn 2022

Review: What is Binary?

❖ A base-n number system is a system of number
representation with n symbols

❖ Decimal system is a base-10 number system
▪ Base-10 symbols: 0,	1,	2,	3,	4,	5,	6,	7,	8,	9
▪ Increase a number by moving to the next greatest symbol
▪ Add another digit when we run out of symbols

❖ Binary is a base-2 number system
▪ Often prefixed with 0b (e.g., 0b1101, 0b10)
▪ Base-2 symbols: 0,	1

3

Lecture 9: Memory Representation & Hack Assembly CSE 390B, Autumn 2022

Hexadecimal

❖ Base-16 number system
▪ Symbols: 0,	1,	2,	3,	4,	5,	6,	7,	8,	9,	A,	B,	C,	D,	E,	F

❖ Commonly used for referring to memory addresses
▪ Simple to convert between binary and hexadecimal
▪ Hexadecimal uses fewer digits to represent a value than binary

❖ Uses the prefix 0x to indicate a number is written in
hexadecimal
▪ 32 is decimal, 0x32 is hexadecimal

4

Lecture 9: Memory Representation & Hack Assembly CSE 390B, Autumn 2022

Number Representation Comparison

5

Decimal Hexadecimal Binary
0 0x0 0b0000
1 0x1 0b0001
2 0x2 0b0010
3 0x3 0b0011
4 0x4 0b0100
5 0x5 0b0101
6 0x6 0b0110
7 0x7 0b0111
8 0x8 0b1000
9 0x9 0b1001
10 0xA 0b1010
11 0xB 0b1011
12 0xC 0b1100
13 0xD 0b1101
14 0xE 0b1110
15 0xF 0b1111

Lecture 9: Memory Representation & Hack Assembly CSE 390B, Autumn 2022

Binary and Hexadecimal Conversion

❖ One-to-one correspondence between binary and
hexadecimal

❖ To convert from binary to hexadecimal, swap out binary
bits digits for the corresponding hexadecimal digit (or vice
versa)

❖ Example: 0x3A is 0b0011_1010
▪ 0x3	==	0b0011
▪ 0xA	==	0b1010	

6

Lecture 9: Memory Representation & Hack Assembly CSE 390B, Autumn 2022

Hack Assembly: Input / Output

❖ Two memory maps are created for you by underlying
hardware
▪ SCREEN is a huge map where each pixel is one bit
▪ KEYBOARD is a single 16-bit word map with code of current key

❖ Example:

7

@KBD

D=M

@SCREEN

M=D

D contains code of current
key (e.g., 67 for “C”)

First 16 bits of screen (top
left) show binary for 67

Lecture 9: Memory Representation & Hack Assembly CSE 390B, Autumn 2022

Hack: Input / Output

❖ I/O is memory
mapped
▪ Corresponds to some

region of RAM
▪ Low-level drivers are

constantly refreshing

8

COMPUTER

MEMORY

KEYBOARD

CPU

REGISTERS

CONTROL
SCREEN

ROM

1110001011111100

RAM

1100101010010101
0110010101100000
1101010010111001
0010110101001000
1010001001001000
1101101111101001

PC

A/M D

Lecture 9: Memory Representation & Hack Assembly CSE 390B, Autumn 2022

Hack: Memory Mapped Output

❖ Each bit of the screen memory map corresponds to one
pixel (1 = black, 0 = white)

❖ The start of the memory map is accessible via the
SCREEN symbol in Hack.asm

9

RAM

1100101010010101
0110010101100000
1101010010111001
0010110101001000
1010001001001000
1101101111101001

SCREEN

Lecture 9: Memory Representation & Hack Assembly CSE 390B, Autumn 2022

Hack: External Memory Abstraction

❖ Programmer sees one RAM32K memory region
▪ Only 16K + 8K + 1 words are being used

❖ Split into three parts: SCREEN, KEYBOARD, and the rest
▪ Screen: 8K words
▪ Keyboard: 1 words
▪ The rest: 16K words (used for data and instructions)

❖ Programmer can use the same interface to interact with
the SCREEN, KEYBOARD, or normal RAM
▪ Just specify address, value, and other inputs
▪ Address determines what part we are interacting with

10

Lecture 9: Memory Representation & Hack Assembly CSE 390B, Autumn 2022

Hack: Internal Memory Implementation

❖ In reality, separate memory chips for memory devices is
unnecessary
▪ “Drivers” are code relaying changes in memory values to the device

❖ In Hack, it’s not as simple as one RAM32K chip
▪ Use internal SCREEN and KEYBOARD chips so our virtual

computer can detect and show changes in the screen and keyboard

❖ Our memory chip has three subchips: SCREEN,
KEYBOARD, and RAM16K
▪ Process the address given by the programmer and relay the

request to the appropriate subchip
11

Lecture 9: Memory Representation & Hack Assembly CSE 390B, Autumn 2022

Hack: Memory Abstraction User View

12

RAM

1100101010010101
0110010101100000
1101010010111001
0010110101001000
1010001001001000
1101101111101001
0010110101001000
1010001001001000
0010110101001000
1101101111101001
0010110101001000
1010001001001000
0010110101001000
1010001001001000
1101101111101001
0010110101001000
1010001001001000
1101101111101001

USER

Screen address

Keyboard address

Lecture 9: Memory Representation & Hack Assembly CSE 390B, Autumn 2022

Hack: Memory Abstraction Internal View

13

USER IMPLEMENTATION

RAM16K

1100101010010101
0110010101100000
1101010010111001
0010110101001000
1010001001001000
1101101111101001

SCREEN

1100101010010101
0110010101100000
1101010010111001

KEYBOARD

1100101010010101

RAM

Lecture 9: Memory Representation & Hack Assembly CSE 390B, Autumn 2022

Vote at https://pollev.com/cse390b

A. Hexadecimal is useful because it’s easier for humans to
read while still being interpretable by a computer

B. 0x390B in binary is 0b0011_1001_0000_1011
C. 390 in hexadecimal is 0x186
D. A programmer can only read from and write to the

SCREEN and KEYBOARD parts of the Hack computer
E. We’re lost…

Which of the following statements is FALSE?

14

Lecture 9: Memory Representation & Hack Assembly CSE 390B, Autumn 2022

Lecture Outline

❖ Hack Assembly Memory Representation
▪ I/O, Memory Mapping, External vs. Internal Memory

❖ Hack Assembly Language Review
▪ Registers, A-Instructions, Symbols, & C-Instructions

❖ Multiplication Implementation Exercise
▪ Multiplying Two Numbers in Hack Assembly

❖ Project 5 Overview
▪ Specification Annotation, Machine Language, & Building

Computer Memory

15

Lecture 9: Memory Representation & Hack Assembly CSE 390B, Autumn 2022

The Hack Computer

❖ The hardware you
will build
▪ 16-bit word size
▪ ROM: sequence of

instructions
• ROM[0], RAM[1]…

▪ RAM: data sequence
• RAM[0], RAM[1]…

1616

COMPUTER

MEMORY

KEYBOARD

CPU

REGISTERS

CONTROL
SCREEN

ROM
(16-bit Instructions,

Read-Only)

1110001011111100

RAM
(16-bit Data,
Read/Write)

1100101010010101
PC

A/M D

Lecture 9: Memory Representation & Hack Assembly CSE 390B, Autumn 2022

The Hack Machine Language

❖ Two types of
instructions (16-bit)
▪ A-instructions load

data
▪ C-instructions perform

computations

❖ Program: sequence
of instructions

1717

COMPUTER

MEMORY

KEYBOARD

CPU

REGISTERS

CONTROL
SCREEN

ROM
(16-bit Instructions,

Read-Only)

1110001011111100

RAM
(16-bit Data,
Read/Write)

1100101010010101
PC

A/M D

Lecture 9: Memory Representation & Hack Assembly CSE 390B, Autumn 2022

Hack: Control Flow

❖ Startup
▪ Hack instructions loaded into ROM
▪ Reset signal initializes computer state (instruction 0)

❖ Execution
▪ Usually, advance to next instruction each cycle
▪ On jump instruction, write a different address into the PC

18

0101110011100110
1011000101010100
1110001011111100
0101110101101110
0001011000111010
0010111011011001
0110111110101001
0001110010110110

ROM (Instructions)

0
1
2
3
4
5
6
7

...

Lecture 9: Memory Representation & Hack Assembly CSE 390B, Autumn 2022

Hack: Registers

❖ D Register: For storing Data

❖ A Register: For storing data and Addressing memory

❖ M “Register”: The 16-bit word in Memory currently being
referenced by the address in A

19

REGISTERS

A
108

D

RAM

1100101010010101

...
106
107
108
109
110
...

M

Lecture 9: Memory Representation & Hack Assembly CSE 390B, Autumn 2022

Hack: A-Instructions

❖ Syntax:

❖ value can either be:
▪ A decimal constant
▪ A symbol referring to a constant

❖ Semantics:
▪ Stores value in the A register

20

@value

Lecture 9: Memory Representation & Hack Assembly CSE 390B, Autumn 2022

Hack: A-Instructions

❖ Symbolic Syntax

▪ Loads a value into the A
register

❖ Example:

21

❖ Binary Syntax

0000000000010101

Family:
A-Instruction

Value:
Binary
encoding of 21

@value

A Register

0

D Register

0

A Register

21

D Register

0

...

@21

...

Lecture 9: Memory Representation & Hack Assembly CSE 390B, Autumn 2022

Hack: Symbols

❖ Symbols are simply an alias for some address
▪ Only in the symbolic code—don’t turn into a binary instruction
▪ Assembler converts use of that symbol to its value instead

❖ Example:

22

@3
D=0

(LOOP)
@21
D=1
@LOOP

...

00
01

02
03
04

0000000000000011
1110101010010000
0000000000010101
1110111111010000
0000000000000010

...

00
01
02
03
04

Assemble

LOOP = 02

Lecture 9: Memory Representation & Hack Assembly CSE 390B, Autumn 2022

Hack: Built-In Symbols

❖ Using () defines a symbol in ROM / Instructions
❖ Assembler knows a few built-in symbols in RAM / Data
❖ R0, R1, ..., R15: Correspond to addresses at the

very beginning of RAM (0, 1, …, 15)
▪ “Virtual registers,” Useful to store variables

❖ SCREEN, KBD: Base of I/O Memory Maps
❖ Example:

23

A Register

0

D Register

0

A Register

3

D Register

0

...

@R3

...

Lecture 9: Memory Representation & Hack Assembly CSE 390B, Autumn 2022

Hack: C-Instructions

❖ Syntax: (dest and jump optional)
▪ dest is a combination of destination registers:

▪ comp is a computation:

▪ jump is an unconditional or conditional jump:

❖ Semantics:
▪ Computes value of comp
▪ Stores results in dest (if specified)
▪ If jump is specified and condition is true (by testing comp result),

jump to instruction ROM[A]
24

dest = comp ; jump

M, D, MD, A, AM, AD, AMD

0, 1, -1, D, A, !D, !A, -D, -A, D+1, A+1, D-1, A-1, D+A, D-A,
A-D, D&A, D|A, M, !M, -M, M+1, M-1, D+M, D-M, M-D, D&M, D|M

JGT, JEQ, JGE, JLT, JNE, JLE, JMP

Lecture 9: Memory Representation & Hack Assembly CSE 390B, Autumn 2022

Hack: C-Instructions Example

25

(EXAMPLE)

@55

D=A+1

00

01

A Register

55

D Register

56

Lecture 9: Memory Representation & Hack Assembly CSE 390B, Autumn 2022

Hack: C-Instructions Example

26

(EXAMPLE)

@55

D=A+1

@R2

M=D

00

01

02

03

RAM

0

1

2

?

?

56

...

A Register

55

D Register

56

A Register

2

D Register

56

Lecture 9: Memory Representation & Hack Assembly CSE 390B, Autumn 2022

Hack: C-Instructions Example

27

(EXAMPLE)

@55

D=A+1

@R2

M=D

@EXAMPLE

D;JGT

00

01

02

03

04

05

RAM

0

1

2

?

?

56

...

A Register

0

D Register

56

(Will jump to instruction 0, since D > 0)

A Register

2

D Register

56

A Register

55

D Register

56

Lecture 9: Memory Representation & Hack Assembly CSE 390B, Autumn 2022

Hack: C-Instructions

❖ Symbolic:

❖ Binary:

28

dest = comp ; jump

1 1 1 a c1 c2 c3 c4 c5 c6 d1 d2 d3 j1 j2 j3

Jump:
Condition for
jumping

Dest:
Where to store
result

Comp:
ALU Operation (a bit chooses
between A and M)

UnusedFamily:
C-Instruction

Lecture 9: Memory Representation & Hack Assembly CSE 390B, Autumn 2022

❖ Symbolic:

❖ Binary:

Hack: C-Instructions

29

dest = comp ; jump

1 1 1 a c1 c2 c3 c4 c5 c6 d1 d2 d3 j1 j2 j3

Chapter 4

Jump:
Condition for
jumping

Lecture 9: Memory Representation & Hack Assembly CSE 390B, Autumn 2022

Hack: C-Instructions

❖ Symbolic:

❖ Binary:

30

dest = comp ; jump

1 1 1 a c1 c2 c3 c4 c5 c6 d1 d2 d3 j1 j2 j3

Chapter 4

Dest:
Where to store
result

Lecture 9: Memory Representation & Hack Assembly CSE 390B, Autumn 2022

Hack: C-Instructions

❖ Symbolic:

❖ Binary:

31

dest = comp ; jump

1 1 1 a c1 c2 c3 c4 c5 c6 d1 d2 d3 j1 j2 j3

Comp:
ALU Operation (a bit chooses
between A and M)

Chapter 4 Important: just pattern
matching text!
Cannot have “1+M”

Lecture 9: Memory Representation & Hack Assembly CSE 390B, Autumn 2022

Vote at https://pollev.com/cse390b

A. 1 1 1 1 1 0 0 1 1 1 0 0 1 0 0 1
B. 1 1 1 0 0 0 1 1 0 0 0 0 0 0 1 1
C. 1 1 1 0 1 0 0 1 1 1 0 1 0 0 1 0
D. 1 1 1 1 0 0 1 1 0 0 0 0 0 0 1 1
E. We’re lost…

What is the C-instruction encoding for D;JGE?

32

Lecture 9: Memory Representation & Hack Assembly CSE 390B, Autumn 2022

Vote at https://pollev.com/cse390b

What is the C-instruction encoding for D;JGE?

33

Lecture 9: Memory Representation & Hack Assembly CSE 390B, Autumn 2022

Five-minute Break!

❖ Feel free to stand up, stretch, use the restroom, drink
some water, review your notes, or ask questions

❖ We’ll be back at:

34

Lecture 9: Memory Representation & Hack Assembly CSE 390B, Autumn 2022

Lecture Outline

❖ Hack Assembly Memory Representation
▪ I/O, Memory Mapping, External vs. Internal Memory

❖ Hack Assembly Language Review
▪ Registers, A-Instructions, Symbols, & C-Instructions

❖ Multiplication Implementation Exercise
▪ Multiplying Two Numbers in Hack Assembly

❖ Project 5 Overview
▪ Specification Annotation, Machine Language, & Building

Computer Memory

35

Lecture 9: Memory Representation & Hack Assembly CSE 390B, Autumn 2022

Exercise: Implementing Multiplication

❖ Write a program that multiplies R0 and R1 and stores the
result in R2
▪ Remember we don’t have a multiply operation
▪ We will have to use add and loops to get the job done

❖ Roadmap
▪ Start with pseudocode using if statements, loops, etc.
▪ Remove conditionals and loops by using jumps in pseudocode
▪ Convert pseudocode to assembly

36

Lecture 9: Memory Representation & Hack Assembly CSE 390B, Autumn 2022

Exercise: Implementing Multiplication

❖ Goal: Implement R0	× R1	=	R2

37

Pseudocode Hack Assembly

Lecture 9: Memory Representation & Hack Assembly CSE 390B, Autumn 2022

Exercise: Implementing Multiplication

❖ Goal: Implement R0	× R1	=	R2

38

Pseudocode Hack Assembly

❖ Approach: add R0 to
the result R1 times

Lecture 9: Memory Representation & Hack Assembly CSE 390B, Autumn 2022

Exercise: Implementing Multiplication

❖ Goal: Implement R0	× R1	=	R2

39

Pseudocode Hack Assembly

❖ Approach: add R0 to
the result R1 times

R2 = 0
while (R1 > 0) {

R2 = R0 + R2
R1 = R1 - 1

}

Lecture 9: Memory Representation & Hack Assembly CSE 390B, Autumn 2022

Exercise: Implementing Multiplication

❖ Remove loops from
pseudocode

❖ Use labels to notate
important sections of the
code

40

❖ Attempt 1: What happens
when R1 is 0? What
should happen?

R2 = 0
while (R1 > 0) {

R2 = R0 + R2
R1 = R1 - 1

}

START:
R2 = 0

LOOP:
R2 = R0 + R2
R1 = R1 - 1
IF R1 > 0 JMP LOOP

END:
INFINITE LOOP

Lecture 9: Memory Representation & Hack Assembly CSE 390B, Autumn 2022

Exercise: Implementing Multiplication

❖ Remove loops from
pseudocode

❖ Use labels to notate
important sections of the
code

41

❖ Attempt 1: What happens
when R1 is 0? What
should happen?

R2 = 0
while (R1 > 0) {

R2 = R0 + R2
R1 = R1 - 1

}

START:
R2 = 0

LOOP:
IF R1 <= 0

JMP to END
R2 = R0 + R2
R1 = R1 - 1
JMP LOOP

END:
INFINITE LOOP

Lecture 9: Memory Representation & Hack Assembly CSE 390B, Autumn 2022

Exercise: Implementing Multiplication

❖ Convert to Hack Assembly

42

START:
R2 = 0

LOOP:
IF R1 <= 0

JMP to END
R2 = R0 + R2
R1 = R1 - 1
JMP LOOP

END:
INFINITE LOOP

(START)
@R2
M = 0

(LOOP)
(END)

Lecture 9: Memory Representation & Hack Assembly CSE 390B, Autumn 2022

Exercise: Implementing Multiplication

❖ Convert to Hack Assembly

43

(START)
@R2
M = 0

(LOOP)
@R1
D = A
@END
D; JLE

(END)

START:
R2 = 0

LOOP:
IF R1 <= 0

JMP to END
R2 = R0 + R2
R1 = R1 - 1
JMP LOOP

END:
INFINITE LOOP

Lecture 9: Memory Representation & Hack Assembly CSE 390B, Autumn 2022

Exercise: Implementing Multiplication

❖ Convert to Hack Assembly

44

(START)
@R2
M = 0

(LOOP)
@R1
D = M
@END
D; JLE

(END)

START:
R2 = 0

LOOP:
IF R1 <= 0

JMP to END
R2 = R0 + R2
R1 = R1 - 1
JMP LOOP

END:
INFINITE LOOP

Lecture 9: Memory Representation & Hack Assembly CSE 390B, Autumn 2022

Exercise: Implementing Multiplication

❖ Convert to Hack Assembly

45

(START)
@R2
M = 0

(LOOP)
@R1
D = M
@END
D; JLE
@R0
D = M
@R2
M = M + D

(END)

START:
R2 = 0

LOOP:
IF R1 <= 0

JMP to END
R2 = R0 + R2
R1 = R1 - 1
JMP LOOP

END:
INFINITE LOOP

Lecture 9: Memory Representation & Hack Assembly CSE 390B, Autumn 2022

Exercise: Implementing Multiplication

❖ Convert to Hack Assembly

46

(START)
@R2
M = 0

(LOOP)
@R1
D = M
@END
D; JLE
@R0
D = M
@R2
M = M + D
@R1
M = M - 1
@LOOP
0; JMP

(END)

START:
R2 = 0

LOOP:
IF R1 <= 0

JMP to END
R2 = R0 + R2
R1 = R1 - 1
JMP LOOP

END:
INFINITE LOOP

Lecture 9: Memory Representation & Hack Assembly CSE 390B, Autumn 2022

Exercise: Implementing Multiplication

❖ Convert to Hack Assembly

47

(START)
@R2
M = 0

(LOOP)
@R1
D = M
@END
D; JLE
@R0
D = M
@R2
M = M + D
@R1
M = M – 1
@LOOP
0; JMP

(END)
@END
0; JMP

START:
R2 = 0

LOOP:
IF R1 <= 0

JMP to END
R2 = R0 + R2
R1 = R1 - 1
JMP LOOP

END:
INFINITE LOOP

Lecture 9: Memory Representation & Hack Assembly CSE 390B, Autumn 2022

Lecture Outline

❖ Hack Assembly Memory Representation
▪ I/O, Memory Mapping, External vs. Internal Memory

❖ Hack Assembly Language Review
▪ Registers, A-Instructions, Symbols, & C-Instructions

❖ Multiplication Implementation Exercise
▪ Multiplying Two Numbers in Hack Assembly

❖ Project 5 Overview
▪ Specification Annotation, Machine Language, & Building

Computer Memory

48

Lecture 9: Memory Representation & Hack Assembly CSE 390B, Autumn 2022

Project 5 Overview

❖ Part I: Annotation
▪ Come prepared to your upcoming Student-TA 1:1 meeting to

work on Project 5 (e.g., specification reading and identifying
annotation strategies you would want to use)

❖ Part II: Machine Language
▪ Implement Max.asm in Hack Assembly

❖ Part III: Building Computer Memory
▪ Implement Memory.hdl in HDL

❖ Part IV: Project 5 Reflection
49

Lecture 9: Memory Representation & Hack Assembly CSE 390B, Autumn 2022

Project 5, Part I: Annotation

❖ Fill out the Assignment Timeline
▪ Divide up Project 5 into doable chunks for the days you plan to

work on the assignment
▪ Describe each day’s task in as much detail as possible

❖ Annotate the Project 5 Specification
▪ Identify five annotation strategies that you want to try
▪ Practice these strategies on the Project 5 specification

❖ Complete Annotation Reflection Questions
▪ Reflect on the strategies you used and why or why not they were

effective

50

Lecture 9: Memory Representation & Hack Assembly CSE 390B, Autumn 2022

Annotate the Project 5 Specification

❖ We’ll provide you with an opportunity to start annotating
the Project 5 specification in class now

❖ Recall these annotation strategies:
§ Highlighting, underlining or using [brackets] to note key points or

ideas
§ Circling unfamiliar words or confusing parts of the text
§ Paraphrasing or summarizing passages/chapters/sections
§ Commenting or reacting to the text 🤯

51

Lecture 9: Memory Representation & Hack Assembly CSE 390B, Autumn 2022

Project 5: Tools

❖ Running a Test Script
(recommended flow):

❖ Quickly Iterating or Experimenting:

52

Max.asm Max.hack

Assembler CPUEmulator

The test scripts use the .hack
files directly! Don’t let your
.asm and .hack get out of sync!

Max.asm

CPUEmulator
Can still “run” the program,
even without a script

Lecture 9: Memory Representation & Hack Assembly CSE 390B, Autumn 2022

Post-Lecture 9 Reminders

❖ Project 4 due tonight (10/27) at 11:59pm

❖ Project 5 (Annotation, Machine Language, & Building
Computer Memory) released today, due next Thursday
(11/3) at 11:59pm

❖ Course Staff Support
▪ Eric has office hours in CSE2 153 today after lecture
▪ Post your questions on the Ed discussion board

53

